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Elastic properties of Sierpinski-like carpets: Finite-element-based simulation
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The elastic properties of two-dimensional continuous composites of fractal structures are studied with the set
of Sierpinski-like carpets filled by voids or rigid inclusions. The effective elastic moduli of these carpets are
calculated numerically using the finite-element and position-space renormalization group techniques. The
fixed-point problem is analyzed by flow diagrams in the plane of the current Poisson ratios and coefficients of
anisotropy of the composites. It is found that in the general case the effective elastic moduli asymptotically
approach a power-law behavior. Moreover, the common exponent characterizes the scaling behavior of each
component of the elastic modulus tensor of a definite carpet. The values of the scaling exponents and positions
of the fixed points are shown to be independent of the elastic properties of the host and depend significantly on
the fractal dimension of the composite.

DOI: 10.1103/PhysRevE.64.056108 PACS number~s!: 05.50.1q
en
-
in
s
st

iz
a

a
e

oe
o

er

d
te
i
e

o
ri

s

t

n

ar
as

id

o-

ski

ith
r-

rpet
s-
an
the
dels
r. It
the

-

ve
lcu-
f

st
ld

tic

em
ruc-

ar-
I. INTRODUCTION

Elastic properties of fractal structures have been int
sively studied since 1984@1–6#. Discrete spring-based mod
els of isotropic percolation clusters or the triangular Sierp
ski gasket have usually been considered. These structure
shown to be described by two independent effective ela
constants, say, the Lame´ coefficientsl and m, which just
depend on the rigidity and the fraction of springs. If the s
L of the system is less than the correlation length it w
found that bothl andm exhibit power-law~scaling! behavior
l,m}L2t, with thesamevalue of the exponentt.

In contrast to the spring-based systems, composite m
rials are usually treated in the framework of continuum m
chanics. Also, the structure of real matrix composites d
not need to follow the percolation models: the aggregation
inclusions could bring a variety of morphologies charact
ized by different fractal dimensions@7#. In its turn, this could
affect composite elastic properties. The first attempt at stu
ing the effective elasticity of continuous fractal composi
was made by Sheng and Tao@8# with the porous Sierpinsk
carpet~see Fig. 1!. Due to the square symmetry of this mod
three independent componentsC1111, C1122, and C1212 of
the effective elastic modulus tensorCi jkl describe its elastic
properties. They were calculated in the long-wave limit
the Dyson equation for elastic scattering waves. The surp
ing message of Ref.@8# was that the effective moduliC1111,
C11112C1122, andC1212 exhibit different scaling behavior a
functions of dimensionless sizeL5 l /a of the carpet. The
valuesl anda are the sizes of the largest~outer! side of the
carpet and the thinnest part of the host ligament between
inclusions~see Fig. 1!. In the latter casea coincides with the
size of the smallest inclusion. The corresponding expone
were estimated to equalt1'0.27,t2'0.25, andt3'0.46. A
close result was obtained by Patlazhan@9# in the framework
of a different approach. Based on two simplifications~the
square inclusions were replaced by circles of the same
and uniformity of the strains inside the inclusions was
sumed! it was obtained thatt1'0.25,t2'0.26,t3'0.33 for
the porous Sierpinski carpet. Additionally, the case of rig
1063-651X/2001/64~5!/056108~10!/$20.00 64 0561
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inclusions was analyzed in Ref.@9#. This results in a scaling
law Ci jkl }Lsp characterized by the other values of the exp
nents. It was found that they are equal tos1's2's3'0.14
for the same moduliC1111, C11112C1122, and C1212. This
fact indicates that the scaling properties of elastic Sierpin
carpets filled by voids or rigid inclusions are different.

The results obtained in Refs.@8,9# for the continuous po-
rous Sierpinski carpet are in qualitative contradiction w
those obtained for lattice isotropic fractals. The main diffe
ence is that the axial and shear moduli of the porous ca
demonstratedistinctscaling behavior. In spite of the sugge
tion that this observation might be explained either as
inherent property of the anisotropic carpet or by breaking
analogy between the discrete and continuous elastic mo
@8#, the nature of this discrepancy has remained unclea
should be noted that these results were obtained just for
three initial generations~stages! of the Sierpinski carpet cor
responding toL53, 32, and 33 ~see Fig. 1!. A dipper parti-
tion of the fractal makes direct calculations of the effecti
moduli extremely cumbersome. Also, the exponents ca
lated in Refs.@8,9# were derived just for the single value o
the host Poisson ration (0)50.2. These points provide at lea
two questions:~i! whether the same scaling behavior wou
be valid for the developed generations~largeL! of the carpet
and~ii ! how the results would vary with change of the elas
characteristics of a host.

Apart from these questions another important probl
arises: How do the scaling properties depend on the st

FIG. 1. Three initial generations of the classical Sierpinski c
pet. ~a! n51, L53; ~b! n52, L59; ~c! n53, L527.
©2001 The American Physical Society08-1
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ture, specifically on the fractal dimension, of the composi
Actually, for many reasons it is important to know the exte
to which the elastic moduli are affected by the fractal dime
sion. In order to answer this problem, here we introduce a
of similar fractals of square symmetry characterized by ot
fractal dimensions~see Fig. 9 below!. These structures ca
be called Sierpinski-like carpets. A common feature of
carpets is that they have the same symmetry and thus ca
described by three independent effective elastic moduli. T
makes it possible to find a correlation of the elastic prop
ties of the composites with the fractal dimensions.

To estimate the scaling properties of the effective ela
moduli of the developed generations of the fractals
position-space renormalization group~PSRG! is considered
in this paper. The main idea of this technique is that
effective elastic moduli, calculated for some generation,
used in the same stage of the carpet as renormalized m
of the host. Then this procedure is reiterated. The effec
moduli of each step are calculated numerically by mean
the finite-element method~FEM!. As long as the number o
iterations is arbitrary, the effective elastic moduli of any ge
eration of a carpet can be approximated in this way.
prove the scaling behavior of the effective elastic modul
sufficiently largeL, a fixed-point problem is studied in th
plane of the current effective Poisson ratiosn5C1122/C1111
and coefficients of anisotropya5(C11112C1122)/(2C1212),
in the framework of the suggested procedure.

This paper is organized as follows. The method of cal
lation of effective elastic moduli of fractal composites is d
scribed in the second section. It is divided into two subs
tions. The constitutive equations adapted to use the fin
element method for the classical Sierpinski carpet
represented in the first one. It provides a method of dir
calculation of the effective elastic moduli for several initi
generations of the fractal. In the second subsection the PS
procedure to simulate elastic properties of the develo
fractal structures is formulated. The results of this appro
are discussed in the third section taking the classical Sier
ski carpet as an example. The scaling behavior of the ef
tive moduli and the fixed-point problem are analyzed
carpets filled by voids and rigid particles. The elastic pro
erties of Sierpinski-like carpets are studied in the fourth s
tion. The dependence of the effective elastic properties
these structures on the fractal dimension is derived and
cussed.

II. CALCULATION OF EFFECTIVE ELASTIC
MODULI: GENERAL SCHEME

A. Finite-element model

For the sake of definiteness we begin with the class
Sierpinski carpet. Its first three stages are shown in Fig
The white ~host! and black~inclusions! areas of the fracta
are supposed to exhibit different rigidities. They are d
scribed by the local elastic modulus tensorci jkl (r ), equal to
ci jkl (r )5ci jkl

host if r belongs to the host orci jkl (r )5ci jkl
inc oth-

erwise. We will assume that the tensor of the elastic mod
of the host is congruent to the square symmetry of the car
Two main types of inclusion are considered in this wo
05610
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voids ~ci jkl
inc 51029ci jkl

host in the numerical simulations! and
rigid particles (ci jkl

inc 5109ci jkl
host). In accordance with the ter

minology accepted in percolation problems and to shor
further exposition, the composites filled by voids and rig
inclusions will be calledelasticandsuperelastic carpets, re-
spectively.

The local displacementsu(r ) and the elastic modul
ci jkl (r ) define the local strain and stress according to
definitions «kl(r )5@uk,l(r )1ul ,k(r )#/2 and s i j (r )
5ci jkl (r )«kl(r ). The effective elastic properties of thenth
generation of the carpet, indicated asV (n), are defined by the
tensor of the effective moduliCi jkl

(n) . It determines the rela-
tionship between the mean strain« i j

(n) and the mean stres
s i j

(n) tensors ofV (n):

s i j
~n!5Ci jkl

~n! «kl
~n! . ~1!

We assume that« i j
(n)5(1/V (n))*V(n)« i j (r )d2r , as an ex-

ample. In the case of the Sierpinski carpet the dimension
size L of V (n) is equal toL53n. Therefore, it is natural to
consider the uniform host as the zeroth generationV (0) of
the carpet and to setCi jkl

(0) 5ci jkl
host. In order to obtain effective

elastic moduli from Eq.~1! the spatial distribution of loca
displacements in the composite has to be calculated u
definite boundary conditions. This can be studied in
framework of the variation principle for the elastic energy

w~u!5
1

2 EV~n!
@c1111~u1,1

2 1u2,2
2 !12c1122u1,1u2,2

1c1212~u1,21u2,1!
2#dx1dx2 . ~2!

In the present paper this problem is numerically solved
using the FEM.

For this purpose a uniform square lattice is imposed
the carpet with sites including the apexes of the square
clusions. Cells of this lattice are supposed to be finite e
ments. The size of a FE is taken at least three times sm
than the minimum thicknessa of the host streak between th
inclusions~see Fig. 1!. Displacementsu inside a FE are ap-
proximated by means of nodal displacementsU5(U1 ,U2),
using the two-power interpolation. In this way the discre
problem of minimization of the positively defined quadra
form

W~U!5UTWU ~3!

is introduced instead of the continuous analog~2!. The com-
ponents of the matrixW are expressed via the components
the elastic modulus tensor of the host and inclusions. T
minimum ofW(U) can be reached on a set of displaceme
U of nodes satisfying linear equilibrium equations insi
V (n),

WU50, ~4!

and the appropriate boundary conditions at the outer side
the composite.
8-2
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ELASTIC PROPERTIES OF SIERPINSKI-LIKE . . . PHYSICAL REVIEW E 64 056108
The componentsC1111
(n) and C1212

(n) of the effective elastic
modulus tensor are computed under periodic boundary c
ditions along thex1 axis,

U~0,x2!5U~ l ,x2!, x2P~0,l !, ~5!

and the fixed displacements on the bottom and top bars
spectively,

U~x1,0!50, U~x1 ,l !5T, x1P~0,l !. ~6!

The boundary conditions~5! and ~6! imply that

«11
~n!50, « i2

~n!5Ti / l , s i25Fi / l ~ i 51,2!, ~7!

whereF is a force applied to the top bar of the outer side
the carpet. Equations~1! and ~7! lead to the following rela-
tionships:

C1212
~n! 5F1 /T1 , C1111

~n! 5C2222
~n! 5F2 /T2 . ~8!

In order to calculateC1122
(n) the following boundary condi-

tions have to be set on the vertical and horizontal bars of
carpet, respectively:

U1~0,x2!50, U1~ l ,x2!5R1 ,

s12~0,x2!5s12~ l ,x2!50, x2P~0,l !, ~9!

U2~x1,0!5U2~x1 ,l !50, s12~x1,0!5s12~x1 ,l !50,

x1P~0,l !, ~10!

whereR5(R1,0) is the fixed displacement of the right han
bar.

Equations~3!, ~9!, and~10! along with Eq.~1! imply that

«11
~n!5T1 / l , «12

~n!5«22
~n!50, s22

~n!5F2 / l ,

C1122
~n! 5s22

~n!/«11
~n!5F2 /R1 . ~11!

In order to calculate the effective elastic moduli of the Si
pinski carpet, it is sufficient to determine the macrosco
force F applied to the top layer of the finite elements,
follows from Eqs.~8! and~11!. The idea of using the transfe
matrix method@4,5# allows one to calculate this force with
out complete numerical solution of the boundary value pr
lem and, therefore, to use a computer more efficiently. T
corresponding numerical algorithms and codes have b
elaborated and used to estimate the effective modulus te
Ci jkl

(n) .
It should be emphasized that direct use of this code fo

highly developed fractal~largen! requires a huge number o
finite elements and therefore becomes impossible. For
reason, we shall restrict use of the FEM up to the fou
initial generation of the carpet.
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B. Position-space renormalization group technique

In order to study elastic properties of developed frac
composites with a large amount of generations, the posit
space renormalization group can be employed. This te
nique has been used before for discrete spring-based mo
of isotropic percolation@10#. In order to adapt it for a con-
tinuous elastic fractal a set of steps must be carried out.
first one includes FEM-based calculations of the effect
moduli of one of the first initial generations of the Sierpins
carpet (n51,2,3,4). This generation will be called here
structural cellof thenth order. The procedure determines t
mapping

f~n!: C~0!→C~n! ~12!

of the host elastic modulusC(0)5$Ci jkl
(0) % to that of the Sier-

pinski carpet of thenth generationC(n)5$Ci jkl
(n) %. The next

step is to use these effective moduli for the renormaliz
host of the carpet having the same level of generation. T
the procedure is reiterated. Afterm steps we reach themnth
generation of the carpet~corresponding toL53nm!. The
scheme of such operations is illustrated in Fig. 2 withn
51. Thus, the effective elastic moduliC(mn) of the mnth
generation of the carpet can be estimated using mapping~12!
m times over:

~13!

It is evident that the accuracy of the results obtained w
the method suggested depends on two factors. The first
is the accuracy of the numerical calculations with the FE
The error can be diminished by appropriate choice of
finite element size, which is supposed to be done. The
ond factor is the leveln of the structural cell. It assigns th
mapping f(n), used to calculate the elastic modulus of t
renormalized host at each step of iteration~13!. The influ-
ence of the last factor may be explained by the followi
example. The effective elastic moduli of the carpet of t
sizeL53nm can be calculated in two ways:~i! the successive
applications ofm iterations of mappingf(n) or ~ii ! the same
with mn iterations of mappingf(1). Each can lead to differen
results not matching the exact solution. This ambiguity c
not be excluded because of the restrictions on the nume
procedure discussed in the previous subsection. The sig
cance of this factor will be discussed in the next sections

FIG. 2. The scheme of the iterative procedure for the derivat
of the effective elastic properties of well-developed Sierpinski-l
carpets using a structural cell of first order.
8-3
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III. EFFECTIVE ELASTIC PROPERTIES
OF THE SIERPINSKI CARPET

A. Fixed-point problem

Because the inclusions considered in this paper have
or infinite rigidity, the mapping~12! is expressed by a firs
order homogeneous function for both elastic and superela
carpets:

f~n!~lC!5lf~n!~C!. ~14!

This property makes it possible to consider just two indep
dent ratios of three elastic moduli of the carpet. We ha
chosen the effective Poisson ration and the coefficient of
anisotropya,

n5
C1122

C1111
, a5

C11112C1122

2C1212
, ~15!

which have a clear physical meaning. The Poisson ration is
a measure of the transverse contraction caused by uni
tension. The coefficient of anisotropya is the degree of de
viation of the effective elastic moduli of an anisotropic m
terial of square symmetry from those of isotropic materi
(a51 for isotropic media!. First order homogeneity of the
effective elastic moduli, given by Eq.~14!, leads to zero
order homogeneity of the ratios defined by Eq.~15!. This
makes it possible to introduce the transformation

r ~n!: ~n~0!,a~0!!→~n~n!,a~n!! ~16!

which determines the mapping of the Poisson ratio and
coefficient of anisotropy of the host to those of thenth gen-
eration of the Sierpinski carpet. The main purpose is to sh
numerically that successive applications ofr (n) would result
in the fixed point (n̄ (n),ā (n)). The fixed point corresponds t
the effective Poisson ratio and the coefficient of anisotro
of a well-developed Sierpinski carpet produced by many
erations of the structural cellV (n). The fixed point must
obey the equation

~ n̄~n!,ā~n!!5r ~n!~ n̄~n!,ā~n!!, ~17!

representing the contraction property of the mappingr (n). If
a solution of this problem exists, it means that all the co
ponents of the elastic modulus tensor yield an exact sca
law with a common exponent. Indeed, if the host moduli
taken to be equal to the values provided by Eq.~17!, the
effective Poisson ratio and the coefficient of anisotro
should be independent of the size of the carpet, i.e.,

~n~0!,a~0!!5~n~mn!,a~mn!!5~ n̄~n!,ā~n!!. ~18!

The last equalities can be fulfilled only if the exact scali
law for all the components of the tensor of the elastic mod
holds:

Ci jkl 5Ci jkl
~0! Lb~n!

. ~19!

The exponentb (n) is equal to2t (n) or s(n) depending on
whether an elastic or superelastic fractal is considered.
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last values can be calculated with the use of one of the c
ponents of the mappingf(n) given by Eq.~12!:

b~n!5
1

n ln 3
lnF f 1111

~n! S 1,n̄ ~n!,
12 n̄ ~n!

2ā~n! D G . ~20!

In the general case, the contractive property of the redu
mappingr (n) will provide a gradual convergence to the fixe
point of the ratios of the effective elastic moduli:

~n~mn!,a~mn!!→~ n̄~n!,ā~n!!, m→`, ~21!

and the scaling law~19! for the moduli will occur asymptoti-
cally ~see the next subsection!.

The convergence~21! has been numerically verified b
means of calculation of the flow diagrams in the~n,a! plane
for both elastic and superelastic Sierpinski carpets. The
sults are shown in Figs. 3~a! and 3~b!, respectively. The solid
lines in the diagrams represent the trajectories of the itera
procedures with a structural cell of ordern52. The starting
positions of the trajectories are given by the parameters

FIG. 3. The flow diagrams calculated by the iterative mapp
~13! with a structural cell of second order for the~a! elastic and~b!
superelastic Sierpinski carpets. The dotted lines are directed a
eigenvectors of the linearized mapping~23!.
8-4
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ELASTIC PROPERTIES OF SIERPINSKI-LIKE . . . PHYSICAL REVIEW E 64 056108
the host. It is clearly seen that all the trajectories in ea
diagram converge to a common fixed point without regard
their starting positions. This important result brings us to
conclusion thateffective elastic properties of the wel
developed Sierpinski carpet are independent of the ela
properties of the host. The difference between the fixe
points of the elastic and superelastic carpets depends e
sively on the values of the elastic moduli of the inclusion
The same conclusions were obtained for some other st
tural cells considered. The data are summarized in Tab
for n51, 2, 3, and 4 together with the limits correspondi
to n→` for the elastic and superelastic Sierpinski carpet

Consider briefly the evidence of the contraction of ma
ping ~16!. Geometrically the contraction signifies a reducti
in distance between two arbitrary points (n1 ,a1) and
(n2 ,a2) in the flow diagram. This property can be express
by the following inequality:

ir ~n!~n2 ,a2!2r ~n!~n1 ,a1!i<di~n2 ,a2!2~n1 ,a1!i
~22!

with arbitrary positived less than 1. Direct proof of the re
lationship ~22! can be given in the near vicinity of a fixe
point. In this case all terms except the linear ones can
neglected in the Taylor expansion of the mappingr (n) and
Eq. ~17! may be rewritten as follows:

r ~n!~n,a!2~ n̄~n!,ā~n!!'~n2 n̄ ~n!,a2ā~n!!R~n!. ~23!

The matricesR(n) together with their eigenvaluesl i
(n) and

eigenvectorsei
(n) can be found numerically in the framewor

of the FEM described above. The results are represente
Table II for n52 for elastic and superelastic composites.

It is seen that the eigenvalues satisfy the inequali
ul i

(2)u,1, i 51,2, which proves that mapping~16! is a con-
tractive one. The directions of the eigenvectors are shown
dotted lines in Fig. 3. The tangential line corresponds to
largest eigenvalue. The convergence of the flow diagram
the fixed point is evident.

The results obtained are slightly dependent on leven.
The limit n→` is obviously important to know. An attemp
to estimate it was made by a two-power polynomial appro
mation of the data corresponding to finite values ofn with

TABLE I. Effective Poisson ration̄ (n), coefficient of anisotropy
ā (n), and scaling exponentst (n) ands(n) at the fixed points of the
elastic and superelastic Sierpinski carpets generated by a struc
cell of the order ofn.

n 1 2 3 4 `

Elastic Sierpinski carpet
n̄ (n) 0.075 0.069 0.066 0.066 0.065
ā (n) 3.02 3.77 4.23 4.33 4.43
t (n) 0.298 0.296 0.291 0.284 0.284

Superelastic Sierpinski carpet
n̄ (n) 0.103 0.085 0.075 0.064 0.063
ā (n) 2.42 2.97 3.33 3.70 3.74
s(n) 0.186 0.170 0.168 0.169 0.168
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respect to the variable«51/n. The results are represented
the last column of Table I. They are close to the estima
corresponding ton54, which provides a reasonable acc
racy of the parameters at the fixed point.

B. Comparison of elastic properties of the initial
and developed generations of the Sierpinski carpet

As was mentioned, the finite-element method can be
plied in practice only for a few initial generations of th
continuous fractal. The results of these calculations for f
generations of the elastic and superelastic Sierpinski ca
are represented in Fig. 4 as logarithmic relationships of th
effective elastic moduliC1111, C1122, andC1212 with dimen-
sionless sizeL of the system. Two values of the Poisson ra
for the isotropic host,n (0)50.2 and 0.8, were considered.
is seen that in this range of the generations approximate
ear dependencies of log10(C) vs log10(L) occur only at
n (0)50.2 for the elastic carpet@see Fig. 4~a!#. The slopes of
these lines are different for different components of the
fective elastic modulus tensor. This observation confirms
predictions of Refs.@8,9#. However, the curves are nonlinea
especially withn (0)50.8 @see Fig. 4~b!#. This indicates that
generally the elastic moduli of the fractal composite do n
obey scaling behavior at a small dimensionless size of
system, and study of the developed generations of the S
pinski carpet becomes essential.

The behavior of log10(C) versus log10(L) in a large range
of L was studied with the PSRG approach using a struct
cell of the order ofn53. The results are plotted in Fig. 5 fo
the example of an elastic~porous! Sierpinski carpet. It is
clearly seen that the curves approach the same slope as
totically giving a common scaling exponent for all comp
nents of the effective elastic modulus tensor~see Table I!.
Moreover, the inequalitiesC1111.C1212.C1122 occur at a
reasonably large dimensionless size of the carpet for e
value of the host Poisson ratio considered. It can be sho
that these inequalities hold for an isotropic matrix ifn (0) is
less than1

3. So the plots forn (0)50.2 retain this order at
arbitraryL and look linear within the whole range ofL @see
Fig. 5~a!#. However, a departure from the linear behavior
small L becomes evident for higher Poisson ratios of t
host, say,n (0)50.8. In this case the curves corresponding
C1212 andC1122 intersect at log10(L)'5 @see Fig. 5~b!#.

The change in the slopes of the curves may be con
niently illustrated by the dependence of the logarithmic d

ral

TABLE II. Linearized mappingR(2) for the elastic and super
elastic Sierpinski carpets.

R(2) Eigenvalues ofR(2) EigenvectorsR(2)

Elastic Sierpinski carpet

S0.51 20.005
0.64 0.77 D 0.76; 0.52 ~20.02 1!; ~0.37 20.93!

Superelastic Sierpinski carpet

S 0.79 20.003
0.21 0.91 D 0.9; 0.8 ~20.03 1!; ~0.46 20.89!
8-5
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rivatives of the effective elastic moduli on log10(L). It is
shown in Fig. 6 with the example ofd log10(C1122)/
d log10(L) for an elastic carpet withn (0)50.2. We can see
that even in this partial case the evolution of the slope
rather complicated in a wide range ofL. It is obvious that the
results of the calculations might be dependent on the orde
the structural cell used in the renormalization procedure.
deed, the distinction between the data obtained with
PSRG for different structural cells of ordern51 and 3 is
visible in Fig. 6. Nevertheless, these results are qualitativ
identical and almost coincide.

Concluding this part, it is instructive to give more e
amples demonstrating convergence to the scaling laws
the fixed points of various effective constants of the car
with different hosts. The data were obtained by PSRG fo
structural cell of the order ofn53.

The behavior of the logarithmic derivatives of the effe
tive elastic moduli with respect to log10(L) for the superelas-
tic Sierpinski carpet atn (0)50.4 is shown in Fig. 7. It can be
seen that all the elastic moduli converge to the common s
ing at large dimensionless size of the carpet (L>330). The

FIG. 4. The dependence of the effective elastic moduli, ca
lated by direct application of the FEM, on the dimensionless sizL
of the Sierpinski carpet. n (0)5 ~a! 0.2; ~b! 0.8. The moduli of the
elastic composite are indicated by the empty squares (C1111), dia-
monds (C1122), and circles (C1212). The filled markers mark the
corresponding moduli of the superelastic carpet.
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order of L showing truly elastic scaling for the superelas
carpet coincides with that for the porous carpet~compare
with Fig. 6!. The asymptote of the curves has a slope cor
sponding to the scaling exponent given in Table I.

FIG. 5. The dependence of the effective elastic moduli cal
lated by means of the PSRG technique with a structural cell of o
3 on the dimensionless sizeL of the elastic Sierpinski carpet with
isotropic host: n (0)5 ~a! 0.2 and~b! 0.8.

FIG. 6. The dependence of logarithmic derivativ
d log10 (C1122)/d log10 (L) on the dimensionless sizeL of the elastic
Sierpinski carpet with an isotropic host (n (0)50.2), calculated by
means of the PSRG technique for two structural cells correspon
to n51 ~dotted line! and 3~solid line!.

-
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Figure 8~a! demonstrates the behavior of the effecti
Poisson ratio of the elastic Sierpinski carpet as a function
its dimensionless size in the curious case of negative
Poisson ration (0)520.2. It can be seen that the effectiv

FIG. 7. The dependencies of the logarithmic derivative of th
independent components of the effective elastic modulus tenso
the dimensionless sizeL of the superelastic Sierpinski carpet wi
isotropic host (n (0)50.4).

FIG. 8. The convergence to asymptotic values~fixed points! of
~a! the effective Poisson ratio and~b! the coefficient of anisotropy
of the elastic Sierpinski carpet with isotropic host at negative P
son ration (0)520.2.
05610
f
st

value of this ratio for the developed carpet leads to the u
versal positive valuen̄ (`)50.065 found for other hosts. Th
same tendency takes place for the superelastic carpet as
~see Table I!. The convergence of the effective coefficient
anisotropya to a fixed value is illustrated in Fig. 8~b! for the
elastic fractal. One of the remarkable properties of this c
stant is that it noticeably exceeds unity for each elastic
superelastic carpet. This means that the composites u
consideration are essentially anisotropic.

IV. ELASTIC PROPERTIES AND FRACTAL DIMENSIONS
OF SIERPINSKI-LIKE CARPETS

In the previous sections we have discussed the ela
properties of the classical Sierpinski carpet with a fixed fr
tal dimension. Qualitatively, it is evident that the results o
tained ~the fixed-point positions, scaling exponents, et!
should change with fractal dimension. We are going to d
cuss this problem in this section.

The relationship between elastic exponents and the fra
dimension of the continuous matrix composites is unknow
To clarify this point in the framework of the square symm
try inherent in the Sierpinski carpet we consider some of
generalizations. The set of these structures will be ca
Sierpinski-like carpets. These objects are constructed in
following way. Dividing the outer side by integer numberk
and then removing a central part with a side of size prop
tional to k22 we obtain the first generations of the carpe
The next step comprises a division of the remaining 4k24
square elements in a similar way. Examples of the sec
generations of such fractals fork55, 7, and 9 are shown in
Fig. 9. Their fractal dimensions are given by the followin
relationship:

D5 log10~4k24!/ log10~k!. ~24!

In the case of the Sierpinski carpetk53 which provides the
known value D51.893. Fractal dimensions of th
Sierpinski-like structures atk55, 7, and 9 are equal to
1.723, 1.633, and 1.577, respectively. These fractals
characterized by the same square symmetry as the Sierp
carpet and their elastic properties can be described by
same set of parameters considered in the above sect
three elastic moduli, the Poisson ratio, and the anisotr
coefficient. Calculating these values for the carpets int

e
on

-

FIG. 9. The second generation of Sierpinski-like carpets w
different fractal dimensions.~a! D51.7227 (k55), ~b! D
51.6332 (k57), and~c! D51.5773 (k59).
8-7
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duced, we can derive the change in the scaling exponents
fixed points with changing fractal dimension.

The strategy of the calculation of the elastic properties
the Sierpinski-like structures is similar to that described
the previous sections for the classical Sierpinski carpet.
final results of the renormalization group analysis are su
marized in Table III. We restricted ourselves here to two s
of data with structural cells of the order of 1 and 2. Usi
these results together with those obtained for the Sierpi
carpet, we can draw the dependencies of different ela
characteristics~effective Poisson ratio, effective coefficien
of anisotropy, and scaling exponents! on the fractal dimen-
sion. They are represented in Fig. 10 calculated by mean
the PSRG technique with corresponding structural cells
ordern51. The black circles represent data for superela
fractals~composites filled by rigid particles! while the empty
circles belong to the elastic ones~porous carpets!. Notice that
the same kind of behavior was observed forn52 excluding
larger values of the coefficients of anisotropy.

The following remarkable properties of the structur
considered should be emphasized. There is a decrease o
effective Poisson ratio and an increase of the coefficien
anisotropy with increase of the ordern of the structural cells
and a diminution of the fractal dimensionD of the carpets
@see Tables I and III, Figs. 10~a! and 10~b!#. It was observed
that these regularities are more marked in the case of po
composites than that of superelastic ones. Quantitative an
sis of the results shows that these properties of Sierpin
like carpets are realized due to the enormous growth ofC1111
with increasingL or n in comparison with the values of othe
components of the effective modulus tensor. In other wo

TABLE III. Effective Poisson ration̄ (n), coefficient of anisot-
ropy ā (n), and scaling exponentst (n) ands(n) at the fixed points of
the elastic and superelastic Sierpinski-like carpets of different f
tal dimensionD generated by structural cells of the order ofn51
and 2.

k D n̄ (n) ā (n) t (n)

Elastic Sierpinski-like carpet
n51

5 1.7227 0.009 89 13.625 0.550 70
7 1.6332 0.002 19 44.271 0.637 16
9 1.5773 0.000 70 107.69 0.681 39

n52
5 1.7227 0.005 33 56.164 0.553 61
7 1.6332 0.000 52 626.06 0.639 56
9 1.5773 0.000 15 2506.0 0.673 07

Superelastic Sierpinski-like carpet
n51

5 1.7227 0.026 92 4.8931 0.438 90
7 1.6332 0.013 03 7.1097 0.554 55
9 1.5773 0.007 72 9.2284 0.618 73

n52
5 1.7227 0.017 49 6.0997 0.427 38
7 1.6332 0.006 96 8.3994 0.546 44
9 1.5773 0.002 28 11.3180 0.618 91
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the development of a fractal structure of the compos
brings their elastic response close to the behavior of un
mensional elastic materials.

The nature of this phenomenon may be understood if
take into account a decrease of the cross sections of the
ments of the host between inclusions with increasing num

c-

FIG. 10. The dependence on the fractal dimension~a! for the
effective Poisson ratios,~b! for the coefficients of anisotropy, an
~c! for the scaling exponents of well-developed Sierpinski-like c
pets. The filled and empty circles correspond to the elastic
superelastic carpets, respectively. Calculations were made by m
of the PSRG technique with corresponding structural cells of fi
order.
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of generations. A complex distribution of the strain a
stress fields inside the streaks can lead to the results
cussed. This outcome, seen in Tables I and III, is confirm
by the sensitivity of the data obtained to the values ofn and
D and the type of inclusion. Actually, the increase of orden
of the structural cell makes calculations of stress and strai
the host more precise. It shifts the Poisson ratio and
coefficient of anisotropy toward lower and higher value
respectively. The decrease of fractal dimension would
emphasize this tendency because it leads to a decrease
host fraction and thus makes the streaks between the in
sions thinner. As to the type of inclusion, the stress-str
states of the host are different for porous and filled materi
The data obtained show that the porous fractals reveal th
selves as unidimensional elastic media to a greater ex
than the composites filled with rigid inclusions.

It is shown in Fig. 10~c! that scaling exponents of elast
and superelastic Sierpinski-like carpets decrease with
crease of the fractal dimension. This sort of behavior of
exponents may be predicted in general. Actually, if the fr
tal dimension is getting closer to the original space dim
sion, the dependence of the effective elastic moduli on
dimensionless size of the fractal should be less pronoun
In the limiting case ofd5D there is no dependence ofL at
all and the exponents should equal zero.

As in the case of the classical Sierpinski carpet, the eff
tive elastic properties of the developed Sierpinski-like str
tures are independent of the host. This remarkable prop
is illustrated in Fig. 11 by flow diagrams calculated with
structural cell of the order ofn51 for both elastic and su
perelastic carpets with fractal dimensionD51.6332. The
fixed-point analysis, produced in the same way as in S
III A, confirms this conclusion. The dotted lines in the
plots show directions of eigenvectors, crossing the fix
points. It suggests that only fractal dimension and rigidity
inclusions determine the effective elastic properties of co
posites with developed structure.

V. CONCLUSIONS

The effective elastic properties of 2D continuous elas
~porous! and superelastic~filled by rigid particles! fractal
composites with the structures of Sierpinski-like carpets h
been studied. A combined technique based on the finite
ment method and the position-space renormalization gr
procedure was developed toward this end. A convergenc
a fixed point was studied by a flow diagram in the plane
the current Poisson ratios and anisotropy coefficients.
fixed points were found to exist for both elastic and sup
elastic carpets. But the convergence becomes apparent
more than 30 steps of partitions. It provides a true ela
self-similarity just for carpets with a well-developed stru
ture. This means that effective elastic moduli do not obey
scaling behavior in the initial generations of the carpets~ex-
cept for the host moduli, equal to those of the fixed poin!.
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A common exponent for all the components of the elas
modulus tensor characterizes elastic scaling. Different ex
nents describe the scaling behavior of elastic and superel
carpets. The fixed points were found to be independent of
elastic properties of the host. So we may conclude that
fractal dimension and the type of inclusion are the most
evant parameters governing the elastic scaling of continu
composites.

Increase of the dimensionless sizeL and of the ordern of
the structural cell and decrease of the fractal dimensionD of
the composites lead to diminution of the effective Poiss
ratio and increase of the coefficient of anisotropy. Th
makes the elastic behavior of the developed continuous c
posites close to that of unidimensional materials. The sca
exponents increase with decrease of the fractal dimensio
both cases of elastic and superelastic Sierpinski-like carp
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FIG. 11. Flow diagrams of the~a! elastic and~b! superelastic
Sierpinski-like carpets of fractal dimensionD51.6332 calculated
with a structural cell of first order. The dotted lines correspond
eigenvectors of the linearized mapping~23!.
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