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Elastic properties of Sierpinski-like carpets: Finite-element-based simulation
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The elastic properties of two-dimensional continuous composites of fractal structures are studied with the set
of Sierpinski-like carpets filled by voids or rigid inclusions. The effective elastic moduli of these carpets are
calculated numerically using the finite-element and position-space renormalization group techniques. The
fixed-point problem is analyzed by flow diagrams in the plane of the current Poisson ratios and coefficients of
anisotropy of the composites. It is found that in the general case the effective elastic moduli asymptotically
approach a power-law behavior. Moreover, the common exponent characterizes the scaling behavior of each
component of the elastic modulus tensor of a definite carpet. The values of the scaling exponents and positions
of the fixed points are shown to be independent of the elastic properties of the host and depend significantly on
the fractal dimension of the composite.
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[. INTRODUCTION inclusions was analyzed in R¢B]. This results in a scaling
law Cj; <L ° characterized by the other values of the expo-
Elastic properties of fractal structures have been intennents. It was found that they are equalste~s,~s3;~0.14
sively studied since 198/4L-6]. Discrete spring-based mod- for the same modulC;;11, Cy117— Ci120, andCyp1o. This
els of isotropic percolation clusters or the triangular Sierpinfact indicates that the scaling properties of elastic Sierpinski
ski gasket have usually been considered. These structures axarpets filled by voids or rigid inclusions are different.
shown to be described by two independent effective elastic The results obtained in Reff8,9] for the continuous po-
constants, say, the Lameefficients\ and u, which just  rous Sierpinski carpet are in qualitative contradiction with
depend on the rigidity and the fraction of springs. If the sizethose obtained for lattice isotropic fractals. The main differ-
L of the system is less than the correlation length it wasence is that the axial and shear moduli of the porous carpet
found that both\ andu exhibit power-law(scaling behavior ~ demonstratelistinct scaling behavior. In spite of the sugges-
N, uocL ™7, with the samevalue of the exponent. tion that this observation might be explained either as an
In contrast to the spring-based systems, composite matéherent property of the anisotropic carpet or by breaking the
rials are usually treated in the framework of continuum me-analogy between the discrete and continuous elastic models
chanics. Also, the structure of real matrix composites doeg8], the nature of this discrepancy has remained unclear. It
not need to follow the percolation models: the aggregation oshould be noted that these results were obtained just for the
inclusions could bring a variety of morphologies characterthree initial generationéstages of the Sierpinski carpet cor-
ized by different fractal dimensior3]. In its turn, this could  responding td-=3, 3%, and ¥ (see Fig. 1 A dipper parti-
affect composite elastic properties. The first attempt at studytion of the fractal makes direct calculations of the effective
ing the effective elasticity of continuous fractal compositesmoduli extremely cumbersome. Also, the exponents calcu-
was made by Sheng and T&8)] with the porous Sierpinski lated in Refs[8,9] were derived just for the single value of
carpet(see Fig. 1 Due to the square symmetry of this model the host Poisson ratig®®=0.2. These points provide at least
three independent componerns;;;, Ci120, and Cq5q, Of  two questions{(i) whether the same scaling behavior would
the effective elastic modulus tens@y;, describe its elastic be valid for the developed generatioifargel) of the carpet
properties. They were calculated in the long-wave limit ofand(ii) how the results would vary with change of the elastic
the Dyson equation for elastic scattering waves. The surprissharacteristics of a host.
ing message of Ref8] was that the effective moduG441;, Apart from these questions another important problem
C1111— C1122, @andC 54, exhibit different scaling behavior as arises: How do the scaling properties depend on the struc-
functions of dimensionless size=1/a of the carpet. The

valuesl anda are the sizes of the large&iutep side of the TR EEEEE
carpet and the thinnest part of the host ligament between th H B N ‘H--H--H-
inclusions(see Fig. 1 In the latter case coincides with the it

size of the smallest inclusion. The corresponding exponent; . .i. - HIC ......
were estimated to equaj~0.27,7,~0.25, andr3~0.46. A il il
close result was obtained by Patlazfi@hin the framework ===ty

of a different approach. Based on two simplificatic(tise ‘. L - .!. .!. .!.
square inclusions were replaced by circles of the same are @) ) ©

and uniformity of the strains inside the inclusions was as-

sumed it was obtained that;~0.25,7,~0.26, 73~0.33 for FIG. 1. Three initial generations of the classical Sierpinski car-

the porous Sierpinski carpet. Additionally, the case of rigidpet.(a) n=1,L=3; (b) n=2,L=09; (c) n=3, L=27.
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ture, specifically on the fractal dimension, of the composite?%,oids (C:?fl :10—90{}?(? in the numerical simulationsand
Actually, for many reasons it is important to know the extentyigid particles €S =10°c"%Y. In accordance with the ter-

to which the elastic moduli are affected by the fractal dime”'minology accepit“e(,\ld_in pe”rgolation problems and to shorten

sion. In order to answer this problem, here we introduce a S&f;ther exposition, the composites filled by voids and rigid
of similar fractals of square symmetry characterized by othefc|ysions will be callectlasticandsuperelastic carpetse-
fractal dimensiongsee Fig. 9 beloyw These structures can spectively.

be calleq Sierpinski-like carpets. A common feature of the * The |ocal displacementsi(r) and the elastic moduli
carpets is that they have the same symmetry and thus can Re () define the local strain and stress according to the
described by three independent effective elastic moduli. Thi";jJ

- ' : - ; efinitions g (r) =[u,(r) +u, (r)1/2 and  oj(r)
r_nakes it possible to flnd_ a correlation o_f the 1_alast|c proper—_ Ciju (N (r). The effective elastic properties of theh
ties of the composites with the fractal dimensions.

; . . _ _ tion of th , indi ), i
To estimate the scaling properties of the effective elastn{genera lon of the carpet, indicated@S?, are defined by the

. n .
moduli of the developed generations of the fractals the_ensor_ of the effective mOdumi(ik)'_' I)t determines the rela-
position-space renormalization grod@SRQ is considered t|(()r:1)sh|p between the mean straiff’ and the mean stress
in this paper. The main idea of this technique is that the?ij €NSOrs of(":
effective elastic moduli, calculated for some generation, are
used in the same stage of the carpet as renormalized moduli
of the host. Then this procedure is reiterated. The effective " - 5
moduli of each step are calculated numerically by means ofVe assume thak;”=(1/Q™) [ome;;(r)d°r, as an ex-
the finite-element methotFEM). As long as the number of ample. In the case of the Sierpinski carpet the dimensionless
iterations is arbitrary, the effective elastic moduli of any gen-SizeL of Q" is equal toL =3". Therefore, it is natural to
eration of a carpet can be approximated in this way. Tgsonsider the uniform host as the zeroth generafif of
prove the scaling behavior of the effective elastic moduli atthe carpet and to Sﬂi(jok)| =Cihj?<?t. In order to obtain effective
sufficiently largeL, a fixed-point problem is studied in the elastic moduli from Eq(1) the spatial distribution of local
plane of the current effective Poisson raties C;,,,/Cqq1;;  displacements in the composite has to be calculated under
and coefficients of anisotropy=(Cy;;;— C1129/(2C15,9),  definite boundary conditions. This can be studied in the
in the framework of the suggested procedure. framework of the variation principle for the elastic energy
This paper is organized as follows. The method of calcu-

G'i(jn): Ci(jnk)l el . 1)

lation of effective elastic moduli of fractal composites is de- 2 2

scribed in the second section. It is divided into two subsec- w(u)=3 fQ(n)[Cllll(ul,1+ U3 5) +2C1104U7 1Uz 2
tions. The constitutive equations adapted to use the finite-

element method for the classical Sierpinski carpet are +Cy14 Uy o+ Uy 1)2]dXyAX; . (2

represented in the first one. It provides a method of direct

calculation of the effective elastic moduli for several initial In the present paper this problem is numerically solved by
generations of the fractal. In the second subsection the PSR@&ing the FEM.

procedure to simulate elastic properties of the developed For this purpose a uniform square lattice is imposed on
fractal structures is formulated. The results of this approaclhe carpet with sites including the apexes of the square in-
are discussed in the third section taking the classical Sierpirglusions. Cells of this lattice are supposed to be finite ele-
ski carpet as an example. The scaling behavior of the effeanents. The size of a FE is taken at least three times smaller
tive moduli and the fixed-point problem are analyzed forthan the minimum thicknessof the host streak between the
carpets filled by voids and rigid particles. The elastic prop-inclusions(see Fig. 1 Displacements inside a FE are ap-
erties of Sierpinski-like carpets are studied in the fourth secproximated by means of nodal displacemedts (U,U,),

tion. The dependence of the effective elastic properties ofising the two-power interpolation. In this way the discrete
these structures on the fractal dimension is derived and digroblem of minimization of the positively defined quadratic
cussed. form

Il. CALCULATION OF EFFECTIVE ELASTIC W(U)=UTwu (3

MODULI: GENERAL SCHEME
is introduced instead of the continuous anal@g The com-

ponents of the matri¥V are expressed via the components of
For the sake of definiteness we begin with the classicalhe elastic modulus tensor of the host and inclusions. The

Sierpinski carpet. Its first three stages are shown in Fig. 1minimum of W(U) can be reached on a set of displacements

The white (hosh and black(inclusions areas of the fractal U of nodes satisfying linear equilibrium equations inside

are supposed to exhibit different rigidities. They are de-Q™,

scribed by the local elastic modulus tensgg(r), equal to

Cijui (1) =cfitif 1 belongs to the host azjy (1) = cffi oth- WU =0, (4)

erwise. We will assume that the tensor of the elastic moduli

of the host is congruent to the square symmetry of the carpe&nd the appropriate boundary conditions at the outer sides of

Two main types of inclusion are considered in this work:the composite.

A. Finite-element model
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The component£{?;, and C{9,, of the effective elastic
modulus tensor are computed under periodic boundary con

ditions along thex; axis,
-+ > >
’ i
U(0xz)=U(l,x5), x,e(0)), ) |

co) —18 CGL)

and the fixed displacements on the bottom and top bars, re-

spectively, FIG. 2. The scheme of the iterative procedure for the derivation
of the effective elastic properties of well-developed Sierpinski-like
U(X1,00=0, U(xy,D)=T, x;€(0)). (6)  carpets using a structural cell of first order.
The boundary conditiong) and (6) imply that B. Position-space renormalization group technique

In order to study elastic properties of developed fractal
composites with a large amount of generations, the position-
space renormalization group can be employed. This tech-
whereF is a force applied to the top bar of the outer side ofnique has been used before for discrete spring-based models
the carpet. Equationd) and(7) lead to the following rela-  of isotropic percolatiorf10]. In order to adapt it for a con-
tionships: tinuous elastic fractal a set of steps must be carried out. The

first one includes FEM-based calculations of the effective
Cl=F1/Ty, Clu=CHh=F,/T,. (8 moduli of one of the first initial generations of the Sierpinski
carpet 6=1,2,3,4). This generation will be called here a

In order to calculatec|},, the following boundary condi- structural cellof thenth order. The procedure determines the
tions have to be set on the vertical and horizontal bars of thexapping
carpet, respectively:

V=0, eD=Ti/l, o,=F/l (=12, (7

fm- cO_,cm (12)
U1(0x;)=0, Uq(l,x2)=Ry,

of the host elastic modulus®={C{}}} to that of the Sier-

010%) = a1l X2) =0, Xye(0)), (99  pinski carpet of thenth generatiorC("={C{{)}. The next
step is to use these effective moduli for the renormalized
Up(x0,00=Un(x1,1) =0,  a1s(X1,0)= oryaXq,1) =0, host of the carpet having the same level of generation. Then

the procedure is reiterated. Aftar steps we reach th@nth
generation of the carpefcorresponding toL=3"™). The
scheme of such operations is illustrated in Fig. 2 with
=1. Thus, the effective elastic modui™ of the mnth
whereR=(Ry,0) is the fixed displacement of the right hand generation of the carpet can be estimated using magpig

bar. m times over:
Equations(3), (9), and(10) along with Eq.(1) imply that

x1€(0]l), (10

£(m) £(n) £
8(1T2T1/|1 8(12):8(22):0, 0.(2%):|:2/|, o ) Clmn)

(13

Ciho= 0518} =F /Ry . (13) It is evident that the accuracy of the results obtained with
the method suggested depends on two factors. The first one
In order to calculate the effective elastic moduli of the Sier-is the accuracy of the numerical calculations with the FEM.
pinski carpet, it is sufficient to determine the macroscopicThe error can be diminished by appropriate choice of the
force F applied to the top layer of the finite elements, asfinite element size, which is supposed to be done. The sec-
follows from Eqgs.(8) and(11). The idea of using the transfer ond factor is the leveh of the structural cell. It assigns the
matrix method 4,5] allows one to calculate this force with- mappingf(™, used to calculate the elastic modulus of the
out complete numerical solution of the boundary value probrenormalized host at each step of iteratid®). The influ-
lem and, therefore, to use a computer more efficiently. Thence of the last factor may be explained by the following
corresponding numerical algorithms and codes have beesmxample. The effective elastic moduli of the carpet of the
elaborated and used to estimate the effective modulus tenssizeL =3"™ can be calculated in two way&) the successive
ci). applications ofm iterations of mappind™ or (ii) the same
It should be emphasized that direct use of this code for avith mniterations of mappind(®). Each can lead to different
highly developed fractallargen) requires a huge number of results not matching the exact solution. This ambiguity can-
finite elements and therefore becomes impossible. For thisot be excluded because of the restrictions on the numerical
reason, we shall restrict use of the FEM up to the fourthprocedure discussed in the previous subsection. The signifi-
initial generation of the carpet. cance of this factor will be discussed in the next sections.
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Ill. EFFECTIVE ELASTIC PROPERTIES 6
OF THE SIERPINSKI CARPET . \

4]
7

A. Fixed-point problem
Because the inclusions considered in this paper have zero
or infinite rigidity, the mapping12) is expressed by a first
order homogeneous function for both elastic and superelastic
carpets:

fMNC)=Nf"(C). (14

Coefficient of anisotropy, o

This property makes it possible to consider just two indepen- I !
dent ratios of three elastic moduli of the carpet. We have ] : . B
chosen the effective Poisson ratioand the coefficient of

anisotro 0.4 0.2 0.0 0.2 04
al N N
Py Poisson ratio, v

_ Cii22 - C1111= Ci122 (15 (@)
Ci1d’ 2Cy01, 6

14

which have a clear physical meaning. The Poisson rat®

a measure of the transverse contraction caused by uniaxial
tension. The coefficient of anisotropyis the degree of de-
viation of the effective elastic moduli of an anisotropic ma-
terial of square symmetry from those of isotropic materials
(a=1 for isotropic media First order homogeneity of the
effective elastic moduli, given by Eql14), leads to zero
order homogeneity of the ratios defined by Efj5). This
makes it possible to introduce the transformation

Coefficient of anisotropy, &

rm: (119,20 — (»", o) (16) . - -

which determines the mapping of the Poisson ratio and the 04 02 . 00 ) 02 04
coefficient of anisotropy of the host to those of tité gen- Poisson ratio, v
eration of the Sierpinski carpet. The main purpose is to show (b)
_numerl_cally thf”‘t sug)cg(ss)lve appll_catlons_rﬁ\‘) would result FIG. 3. The flow diagrams calculated by the iterative mapping
in the fixed point ¢™, (™). The fixed point corresponds to 13) with  cell of d order f lasti b
the effective Poisson ratio and the coefficient of anisotrop ) wit a structural cell of second order for ¢ (e elastic andb)

f Ild | d Sierpinski d db " superelastic Sierpinski carpets. The dotted lines are directed along
0 a_ well-develope lerpinski carpet p“? uce ) y many It'eigenvectors of the linearized mappi(@g).
erations of the structural celW. The fixed point must

obey the equation last values can be calculated with the use of one of the com-

(T @My = (M, M), 17) ponents of the mappin§™ given by Eq.(12):
—_7tn
representing the contraction property of the mappifiy If gm= . Inl £ [ 17t e (20)
B . . B ) In3 1111 4 Yl
a solution of this problem exists, it means that all the com n a

ponents of the elastic modulus tensor yield an exact scalin )
law with a common exponent. Indeed, if the host moduli arelgn the general case, the contractive property of the reduced
taken to be equal to the values provided by ELj7), the ma}pplngr(”) WI|.| provide agrad.ual convergence to the fixed
effective Poisson ratio and the coefficient of anisotropyPoint of the ratios of the effective elastic moduli:
should be independent of the size of the carpet, i.e., (A0 M) (0 GO o (21)
(V(O),a(o))=(V(m”),a(mn))z(?(”),a(”)). (18 _ o _
and the scaling lawl19) for the moduli will occur asymptoti-
The last equalities can be fulfilled only if the exact scalingcally (see the next subsectipn
law for all the components of the tensor of the elastic moduli The convergencé21) has been numerically verified by
holds: means of calculation of the flow diagrams in thex) plane
for both elastic and superelastic Sierpinski carpets. The re-
Cij=Ci{% LA™, (19)  sults are shown in Figs(8 and 3b), respectively. The solid
lines in the diagrams represent the trajectories of the iterative
The exponeni3™ is equal to— 7" or s(" depending on procedures with a structural cell of ordet 2. The starting
whether an elastic or superelastic fractal is considered. Theositions of the trajectories are given by the parameters of
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TABLE I. Effective Poisson ratia{™, coefficient of anisotropy TABLE II. Linearized mappingR® for the elastic and super-
o™, and scaling exponentd™ ands(™ at the fixed points of the elastic Sierpinski carpets.
elastic and superelastic Sierpinski carpets generated by a structurat

cell of the order ofn. R® Eigenvalues oR® EigenvectorR(?
n 1 2 3 4 - Elastic Sierpinski carpet
— 0.51 —0.00 0.76; 0.52 (-0.02 1; (0.37-0.93

Elastic Sierpinski carpet 064 0.77
2?) 0.075 0.069 0.066 0.066 0.065 Superelastic Sierpinski carpet
a 3.02 3.77 4.23 4.33 4.43 0.79 —0.00 0.9: 0.8 (—0.03 1: (0.46 —0.89)
M 0.298 0.296 0.291 0.284 0.284 0.91 0.91

Superelastic Sierpinski carpet ' i

P 0.103 0.085 0.075 0.064 0.063
2 - ;
@ 242 2.97 3.33 3.70 3.74 respect to the variable=1/n. The results are represented in
s 0.186 0.170 0.168 0.169 0.168

the last column of Table I. They are close to the estimates
corresponding tax=4, which provides a reasonable accu-
facy of the parameters at the fixed point.

the host. It is clearly seen that all the trajectories in eac
diagram converge to a common fixed point without regard to

their starting positions. This important result brings us to the B. Comparison of elastic properties of the initial
conclusion thateffective elastic properties of the well- and developed generations of the Sierpinski carpet
developed Sierpinski carpet are independent of the elastic

properties of the hostThe difference between the fixed As was mentioned, the finite-element method can be ap-

points of the elastic and superelastic carpets depends echBI-'ed. in practice only for a few initial generanpns of the
continuous fractal. The results of these calculations for four

sively on the values of the elastic moduli of the inclusions. enerations of the elastic and superelastic Sierpinski carpet
The same conclusions were obtained for some other stru® b b P

tural cells considered. The data are summarized in Table $'C representgd in Fig. 4 as logarithmic relationships of three
for n=1, 2, 3, and 4 together with the limits correspondingeffecnve elastic modulCys11, Ci122, andCy, With dimen-

to n—c for the elastic and superelastic Sierpinski carpets. sionless siz& of the system. Two values of the Poisson ratio

Consider briefly the evidence of the contraction of map—!cor the isotropic hosty 0.2 and 0.8, were considered. It

ping (16). Geometrically the contraction signifies a reduction 'esa‘:’egg tgr?(tjénn(t:?elss rng}e cgth\(jsg(Iaonerafonsciﬁfrg)rillma;? lin-
in distance between two arbitrary points;(a;) and P adC) Gho(L) y

; - - »(0)=0.2 for the elastic carpgsee Fig. 4a)]. The slopes of
é;z{ﬁé)féﬂ;Cv?ngomedéﬁgﬁ? - This property can be expresse hese lines are different for different components of the ef-

fective elastic modulus tensor. This observation confirms the
(n) _r(n < _ predictions of Refd.8,9]. However, the curves are nonlinear,
Y (Vl'al)”(zz) especially with»(©)=0.8[see Fig. 4b)]. This indicates that
generally the elastic moduli of the fractal composite do not
with arbitrary positives less than 1. Direct proof of the re- obey scaling behavior at a small dimensionless size of the
lationship (22) can be given in the near vicinity of a fixed system, and study of the developed generations of the Sier-
point. In this case all terms except the linear ones can bpinski carpet becomes essential.
neglected in the Taylor expansion of the mappity) and The behavior of logy(C) versus logq(L) in a large range
Eqg. (17) may be rewritten as follows: of L was studied with the PSRG approach using a structural
cell of the order oh= 3. The results are plotted in Fig. 5 for
rMw,a)— (@M, aM)~(r—2" a—a™)RM™. (23)  the example of an elastiporous Sierpinski carpet. It is
clearly seen that the curves approach the same slope asymp-
The matricesR(™ together with their eigenvalues!™ and  totically giving a common scaling exponent for all compo-
eigenvectors—g(") can be found numerically in the framework nents of the effective elastic modulus tengsee Table )L
of the FEM described above. The results are represented Moreover, the inequalitie€11:>C1215>C112, OCCUr at a
Table Il forn=2 for elastic and superelastic composites. reasonably large dimensionless size of the carpet for each
It is seen that the eigenvalues satisfy the inequalitievalue of the host Poisson ratio considered. It can be shown
IN®|<1,i=1,2, which proves that mappird6) is a con- that these inequalities hold for an isotropic matrixif) is
tractive one. The directions of the eigenvectors are shown bless than;. So the plots forv(®)=0.2 retain this order at
dotted lines in Fig. 3. The tangential line corresponds to tharbitraryL and look linear within the whole range bf[see
largest eigenvalue. The convergence of the flow diagrams tbig. 5@)]. However, a departure from the linear behavior at
the fixed point is evident. small L becomes evident for higher Poisson ratios of the
The results obtained are slightly dependent on level host, sayp(®=0.8. In this case the curves corresponding to
The limit n— oo is obviously important to know. An attempt Ci,q1,andC,4, intersect at logy(L)~5 [see Fig. B)].
to estimate it was made by a two-power polynomial approxi- The change in the slopes of the curves may be conve-
mation of the data corresponding to finite valuesnokith niently illustrated by the dependence of the logarithmic de-
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0.5 0
0.0 2 | C 111
§-0,5 96 -4 C 1212
> >
_8’-1.0 - S 6 r Cux
15 | -8
20 ' s s -10 ' '
0.0 05 1.0 15 2.0 Y 10 20 30
\ L) logqo(L)
0g10
(@)
@
0
0.5
-2
0.0
0.5 g B
o - =
s F)
8 10
-8
-1.5
-10 - , . :
20 1 ) ' 0 10 20 30
0.0 0.5 1.0 15 2.0 logyo(L )
logo(L) (b)
(b) FIG. 5. The dependence of the effective elastic moduli calcu-

FIG. 4. The d d f the effecti lasti quli. cal lated by means of the PSRG technique with a structural cell of order
- 4. 1he dependence of the efiective eastic Modull, Caltls o, e dimensionless sizeof the elastic Sierpinski carpet with
lated by direct application of the FEM, on the dimensionless lsize isotropic host: #= () 0.2 and(b) 0.8
of the Sierpinski carpet. (9= (a) 0.2; (b) 0.8. The moduli of the : : o

elastic composite are indicated by the empty squa@s.(), dia-

monds Ci1»), and circles Cy51). The filled markers mark the order ofL showing truly elastic scaling for the superelastic

corresponding moduli of the superelastic carpet. carpet coincides with that for the porous cargedmpare
with Fig. 6). The asymptote of the curves has a slope corre-

rivatives of the effective elastic moduli on IggL). It is sponding to the scaling exponent given in Table I.

shown in Fig. 6 with the example ofllog;o(Ci129)/
dlog,o(L) for an elastic carpet with(®)=0.2. We can see
that even in this partial case the evolution of the slope is
rather complicated in a wide rangeloflt is obvious that the
results of the calculations might be dependent on the order of
the structural cell used in the renormalization procedure. In-
deed, the distinction between the data obtained with the
PSRG for different structural cells of order=1 and 3 is

-0.25

dlogio(C1122)/dlogio(L)

visible in Fig. 6. Nevertheless, these results are qualitatively -0.35
identical and almost coincide. k4
Concluding this part, it is instructive to give more ex-
amples demonstrating convergence to the scaling laws and L
the fixed points of various effective constants of the carpet 04 0 10 20 20 40

with different hosts. The data were obtained by PSRG for a
structural cell of the order afi=3.

The behavior of the logarithmic derivatives of the effec- £, 6. The dependence of logarithmic derivative
tive elastic moduli with respect to legL) for the superelas- ¢ |og,,(C;1,9/d l0g;0(L) on the dimensionless sizeof the elastic
tic Sierpinski carpet at(®)=0.4 is shown in Fig. 7. It can be  Sierpinski carpet with an isotropic host®=0.2), calculated by
seen that all the elastic moduli converge to the common scameans of the PSRG technique for two structural cells corresponding
ing at large dimensionless size of the carpe@®Y). The  ton=1 (dotted liné and 3(solid line).

logqo(L)
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0.2

(@) (b) ©

(=]
-
(o]

dlogi1o(C)/dlogio(L)
o
]

FIG. 9. The second generation of Sierpinski-like carpets with
0.08 —_—— 1 different fractal dimensions.(a) D=1.7227 k=5), (b) D
0 10 20 30 40 =1.6332 k=7), and(c) D=1.5773 k=9).
logqo(L)

FIG. 7. The dependencies of the logarithmic derivative of threev@lue of this ratio for the developed carpet leads to the uni-

independent components of the effective elastic modulus tensor oversal positive valuet™)=0.065 found for other hosts. The
the dimensionless size of the superelastic Sierpinski carpet with Same tendency takes place for the superelastic carpet as well
isotropic host ¢(9=0.4). (see Table)l The convergence of the effective coefficient of

anisotropya to a fixed value is illustrated in Fig.(B) for the
elastic fractal. One of the remarkable properties of this con-

Poisson ratio of the elastic Sierpinski carpet as a function oft2nt ISI that it noﬂceabhly exceeds En'tygor each elastic ar:jd
its dimensionless size in the curious case of negative hostiPerelastic carpet. This means that the composites under

Poisson ration®= —0.2. It can be seen that the effective COnsideration are essentially anisotropic.

Figure 8a) demonstrates the behavior of the effective

IV. ELASTIC PROPERTIES AND FRACTAL DIMENSIONS
0.1 OF SIERPINSKI-LIKE CARPETS

In the previous sections we have discussed the elastic
properties of the classical Sierpinski carpet with a fixed frac-
tal dimension. Qualitatively, it is evident that the results ob-
tained (the fixed-point positions, scaling exponents, )etc.
should change with fractal dimension. We are going to dis-
cuss this problem in this section.

The relationship between elastic exponents and the fractal
dimension of the continuous matrix composites is unknown.
0.2 - . . To clarify this point in the framework of the square symme-

0 10 20 30 40 try inherent in the Sierpinski carpet we consider some of its
logi(L) ggneralizgt@ons. The set of thes_e structures will be qalled
Sierpinski-like carpets. These objects are constructed in the
(@) following way. Dividing the outer side by integer numder
and then removing a central part with a side of size propor-
tional tok—2 we obtain the first generations of the carpets.
The next step comprises a division of the remainirkg-4
square elements in a similar way. Examples of the second
generations of such fractals fae=5, 7, and 9 are shown in
Fig. 9. Their fractal dimensions are given by the following
relationship:

Poisson ratio, v

D=log;o(4k—4)/log;o(k). (24

Coefficient of anisotropy, o

0 : : : In the case of the Sierpinski carget 3 which provides the
0 10 20 30 40 known value D=1.893. Fractal dimensions of the
logqo(L) Sierpinski-like structures ak=5, 7, and 9 are equal to
(b) 1.723, 1.633, and 1.577, respectively. These fractals are
characterized by the same square symmetry as the Sierpinski
FIG. 8. The convergence to asymptotic val(fised pointsg of carpet and their elastic properties can be described by the
(a) the effective Poisson ratio ar(t)) the coefficient of anisotropy Same set of parameters considered in the above sections:

of the elastic Sierpinski carpet with isotropic host at negative Poisthree elastic moduli, the Poisson ratio, and the anisotropy
son ratiov¥=—-0.2. coefficient. Calculating these values for the carpets intro-
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TABLE III. Effective Poisson ratiot™, coefficient of anisot- 0.12
ropy ™, and scaling exponent$™ ands(™ at the fixed points of
the elastic and superelastic Sierpinski-like carpets of different frac-
tal dimensionD generated by structural cells of the ordernof 1
and 2.

o

[=)

[o1]
T

K D 70 ) 0

0.04

Poisson ratio, v

Elastic Sierpinski-like carpet
n=1
5 1.7227 0.009 89 13.625 0.550 70
1.6332 0.002 19 44.271 0.637 16 0.00 ) '
9 1.5773 0.000 70 107.69 0.681 39 15 16 17 18 19
n=2 Fractal dimension, D
5 1.7227 0.005 33 56.164 0.553 61 (@)

1.6332 0.000 52 626.06 0.63956
9 1.5773 0.000 15 2506.0 0.67307
Superelastic Sierpinski-like carpet

n=1
5 1.7227 0.026 92 4.8931 0.438 90
1.6332 0.01303 7.1097 0.554 55
9 1.5773 0.007 72 9.2284 0.61873
n=2
5 1.7227 0.017 49 6.0997 0.427 38
1.6332 0.006 96 8.3994 0.546 44
9 1.5773 0.002 28 11.3180 0.618 91 0

~

~

120

90 |

~

60

30 r

~

Coefficient of anisotropy, o

15 1.6 1.7 1.8 1.9
Fractal dimension, D

duced, we can derive the change in the scaling exponents and ®)
fixed points with changing fractal dimension.

The strategy of the calculation of the elastic properties for
the Sierpinski-like structures is similar to that described in
the previous sections for the classical Sierpinski carpet. The
final results of the renormalization group analysis are sum-
marized in Table Ill. We restricted ourselves here to two sets
of data with structural cells of the order of 1 and 2. Using
these results together with those obtained for the Sierpinski
carpet, we can draw the dependencies of different elastic
characteristicqeffective Poisson ratio, effective coefficient
of anisotropy, and scaling exponentm the fractal dimen-
sion. They are represented in Fig. 10 calculated by means of 1 ! :
the PSRG technique with corresponding structural cells of 16 17 18 1.9
ordern=1. The black circles represent data for superelastic Fractal dimension, D
fractals(composites filled by rigid particlesvhile the empty ©
circles belong to the elastic ongsorous carpejsNotice that
the same kind of behavior was observed it 2 excluding FIG. 10. The dependence on the fractal dimeng@nfor the
larger values of the coefficients of anisotropy. effective Poisson ratiogh) for the coefficients of anisotropy, and

The following remarkable properties of the structures(c) for the scaling exponents of well-developed Sierpinski-like car-
considered should be emphasized. There is a decrease of thets. The filled and empty circles correspond to the elastic and
effective Poisson ratio and an increase of the coefficient o$uperelastic carpets, respectively. Calculations were made by means
anisotropy with increase of the ordef the structural cells of the PSRG technique with corresponding structural cells of first
and a diminution of the fractal dimensidd of the carpets order.

[see Tables | and lll, Figs. 18 and 1@b)]. It was observed

that these regularities are more marked in the case of porouke development of a fractal structure of the composites

composites than that of superelastic ones. Quantitative analyprings their elastic response close to the behavior of unidi-

sis of the results shows that these properties of Sierpinskimensional elastic materials.

like carpets are realized due to the enormous growB,9f; The nature of this phenomenon may be understood if we

with increasing- or n in comparison with the values of other take into account a decrease of the cross sections of the liga-
components of the effective modulus tensor. In other wordsments of the host between inclusions with increasing number

o
o

o o
E-N o
T T

Scaling exponent, 1, s
o
N

o
o

N
3
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of generations. A complex distribution of the strain and 100 :

stress fields inside the streaks can lead to the results dis- 3 :R
cussed. This outcome, seen in Tables | and lll, is confirmed 2

by the sensitivity of the data obtained to the values aihd % 67 | (\
D and the type of inclusion. Actually, the increase of order 2

of the structural cell makes calculations of stress and strain in g ~

the host more precise. It shifts the Poisson ratio and the O \
coefficient of anisotropy toward lower and higher values, g \\
respectively. The decrease of fractal dimension would just Q S

emphasize this tendency because it leads to a decrease of the © //K\
host fraction and thus makes the streaks between the inclu- 1 : : ¢ :

sions thinner. As to the type of inclusion, the stress-strain 04 02 Pmsso‘:‘-(’ratio y 02 04
states of the host are different for porous and filled materials. @) '

The data obtained show that the porous fractals reveal them-
selves as unidimensional elastic media to a greater extent "
than the composites filled with rigid inclusions.

It is shown in Fig. 10c) that scaling exponents of elastic
and superelastic Sierpinski-like carpets decrease with in-
crease of the fractal dimension. This sort of behavior of the
exponents may be predicted in general. Actually, if the frac-
tal dimension is getting closer to the original space dimen-
sion, the dependence of the effective elastic moduli on the
dimensionless size of the fractal should be less pronounced.

In the limiting case ofd=D there is no dependence bfat I _'/.k

all and the exponents should equal zero. ' '
0.4 -0.2 0.0 02 04

~

Coefficient of anisotropy, o

As in the case of the classical Sierpinski carpet, the effec- Poi )
. . . . . P, oisson ratio, v
tive elastic properties of the developed Sierpinski-like struc- ®)

tures are inde